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Evolution of a single defect in an ideal two-dimensional hexagonal soap froth

W. Y. Tam
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

~Received 31 July 1998!

We have simulated the evolution of a single defect in an ideal two-dimensional hexagonal soap froth using
a physical model based on a combination of mass transfer, vertex movement, and edge relaxation. We find that
the defect grows quadratically with time while the mean area of the cells surrounding the defect remains
constant in a new scaling state with a topological distribution that differs from the normal froth. Moreover, the
number of cell neighbors to the defect is found to grow linearly with time. The results agree with the large-Q
Potts model for soap froth and qualitatively with a recent experiment using a bubble raft.
@S1063-651X~98!13812-6#

PACS number~s!: 82.70.Rr, 02.50.2r
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Cellular structures observed in such areas as metal gr
and biological tissues are common in nature@1#. Soap froth
has been a paradigm for the studies of nonequilibrium ce
lar systems because of its simplicity and relative ease in
experimental setup@2–5#. The system is driven by gas dif
fusion and in two dimensions the evolution is governed
von Neumann’s law:

dAn

dt
5k~n26!, ~1!

whereAn is the area of ann-sided cell andk is the diffusion
constant. Thus ann-sided cell will grow forn.6 or shrink
for n,6. von Neumann’s law combined withT1 and T2
topological transitions led to the coarsening of the froth t
universal scaling state indicated by the stationarity of
distribution functions@5–7#. It is believed that the universa
scaling state is independent of initial conditions and has b
confirmed by experiments@2–5# and simulations@8–14#
starting with disordered initial conditions. However, th
common belief has been tested by a topological simula
for the evolution of an ideal two-dimensional hexagon
froth with a singe defect@15#. This study suggested that wit
this particular initial condition the system will evolve to
new scaling state different from the usual scaling state
normal froth. The result was reexamined by recent simu
tions of the large-Q Potts model@16# and direct simulation
@17# using the method of Weaire and Kermode@11#. Both the
large-Q Potts model@18# and the direct simulation@11# have
been shown to reproduce well the evolution of tw
dimensional soap froth. These studies support the prev
suggestion qualitatively. However, it is not clear whether
new scaling state has been reached due to the small sa
size in the direct simulation@17# and lattice effects in the
Potts model @16#. Previous experiments on dry two
dimensional soap froth have shown a transient that dif
from the normal scaling state for relatively ordered fro
with many topological defects@19#. However, the system
eventually reached the normal scaling state at long time
recent experimental study of a single topological defect i
two-dimensional bubble raft@20# provides some insight into
the new scaling state despite the fact that the experim
corresponds to wet froth. Nevertheless, this study reenfo
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the need to better quantify the new scaling state. While
experiment starting with a single defect in an ideal dry he
agonal froth is highly desirable, we use the direct simulat
approach to obtain the long time behavior for the defect a
the cluster of cells surrounding the defect.

The direct simulation used in this study has been repo
recently in detail@13,14# and is similar to that of Weaire an
Kermode~WK! @11# and Aref and Herdtle~AF! @12#. The
simulation is based on a physical model where the movem
of cell walls and vertices due to gas diffusion through t
cell walls between neighboring cells is followed by findin
the quasiequilibrium configuration such that three wa
~edges! meet at 120° and the pressure difference across e
edge is balanced by the tensional force acting on the e
after each ‘‘diffusion step.’’ Furthermore,T1 andT2 topo-
logical transitions are implemented with a series of criteria
eliminate spurious behavior and enable tight control on
accuracy~see Refs.@13,14# for detailed implementation!.
Note that, unlike the simulations of WK@11# and AF @12#,
von Neumann’s law is not built into the model but is we
satisfied for every individualn-sided cell @13#. The model
has been shown to reproduce quantitatively the evolution
two-dimensional soap froth@13,14# and has also been ap
plied to a recent study of ancestral cells~ancestors! that sur-
vive for long times@21#.

The simulation starts with a perfect two-dimensional he
agonal lattice with 5000 cells. The defect is created by s
pressing an edge in the lattice giving an eight-sided cell w
two symmetrical five-sided cells and six hexagonal cells s
rounding the defect, as shown in Fig. 1~a!. This initial con-
dition is the same as that used in Ref.@17#. Using periodic
boundary conditions, the froth is allowed to evolve accord
to the dynamics as stated above for normal soap froth.
defect is found to grow while the surrounding cells shrin
leading to a circular propagating front ‘‘consuming’’ th
regular hexagonal lattice, as shown in Fig. 1. The resul
similar to the large-Q Potts model except that the Pot
model gives a less symmetric front probably due to latt
effects.

Figure 2 shows qualitatively a quadratic dependence
the normalized areaadef5Adef/A0 of the defect as a function
of the simulation timet. HereAdef is the area of the defec
and A0 is the lattice size. A power-law fit foradef versust
8032 © 1998 The American Physical Society
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gives an exponent of 2.206 0.01. The result is the same a
the previous simulation with about 1000 cells where the
dius of the defect increases roughly linearly with tim
@13,14#. Since only the cells around the defect are affected
is desirable to define a cluster$c% as cells having at least on
neighbor that is not six-sided@15#. However, the cluster is
heavily dominated by the defect when the defect is mu
bigger than the lattice size. Thus an alternate choice is
exclude the defect to form a boundary cluster$c8% surround-
ing the defect@20#. In addition, to facilitate the use of an
other time scale, the cells$b% that are neighbors to the defe
will also be monitored. Figure 2~b! shows the mean are
~normalized by the hexagonal lattice! of the cluster$c%, the
boundary cluster$c8%, and the neighbor cells$b% as a func-
tion of time. The mean area of the cluster^ac& is found to
increase almost linearly due to the effect of the defect.
contrast, the mean areas of the boundary cluster^ac8& and
the neighbor cellŝ ab& approach stationary values of 0.8
60.03 and 0.6960.01, respectively. The steady-state val
of ^ac8& is between those of the Potts-model simulati
(^ac8&50.8860.08 @16#! and the bubble-raft experimen
(^ac8&50.7760.04 @20#!.

Figure 3~a! shows an almost linear dependence on
number of cellsNb that are neighbors to the defect with th
simulation time. A power-law fit ofNb versust gives an
exponent of 1.0960.01. Hence ifNb is used as a new time
scale, the area of the defect should grow quadratically w
Nb . Indeed, a power-law fit ofadef versusNb gives an ex-
ponent of 2.0160.01. Furthermore, it is expected that th
number of cellsNc8 in the boundary cluster$c8% is propor-
tional to Nb , as shown in Fig. 3~b!. A power-law fit ofNc8
versusNb gives an exponent of 0.9960.02. In addition, the
ratio Nc8 /Nb is found to be 1.8060.02. Physically, the
boundary cluster$c8% consists of one layer of neighbor cel
$b% surrounding the defect plus a partial layer~80%! of six-
sided cells next to the neighbor cells. The mean area of
cells in the partial layer differs only by 1% from the regul
lattice, indicating that they are not affected by the defect v

FIG. 1. Evolution of a single defect in a perfect hexagonal fro
at ~a! 0.00,~b! 9.81,~c! 19.80, and~d! 39.80 simulation time units
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much. This implies that the propagation of the defect ha
relatively ‘‘sharp’’ interface such that there is a thin boun
ary, at most two layers of cells, between the defect and
regular lattice. The above result confirms the topologi
simulation@15# in which the number of ‘‘killed’’ cells was
used as the time scale because the number of ‘‘killed’’ ce
scales with the defect area.

Figure 4~a! shows the second moment of the topologic
distributionr(n) defined asm25S(n26)2r(n) for the clus-
ter $c%, the boundary cluster$c8%, and the neighbor cells$b%
as a function of time. It is clear thatm2 for the cluster$c%
increases with time primarily due to the increase in the nu
ber of sides of the defect and is in agreement with the P
simulation@16#. However,m2 for both the boundary cluste
$c8% and the neighbor cells$b% reaches steady values o
0.7660.01 and 1.3760.02, respectively. In addition, the to

FIG. 2. ~a! The normalized area of the defect as a function
simulation time.~b! The normalized mean number of the cluster$c%
~dashed line!, the boundary cluster$c8% ~solid line!, and the neigh-
bor cells$b% ~dotted line! as a function of simulation time.
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pological distributionsr(n) for both sets of cells$c8% and
$b% are found to be stationary and the mean values are sh
in Fig. 4~b! using data withNb larger than 80. The abov
results strongly support a nontrivial new scaling state tha
different from the normal froth shown as a dashed line
Fig. 4~b!. The m2 and the topological distribution for th
boundary cluster$c8% agree well with the Potts simulatio
@16# despite the fact that there is still a slow increase inm2
shown in Fig. 3 of Ref.@16#. One striking feature of the
topological distribution of the boundary cluster$c8% and the
neighbor cells$b% is that there is no cell with eight sides o
more, indicating that they are relatively more ‘‘ordered
than the normal froth.

In conclusion, we have simulated the evolution of a sin
defect in a perfect hexagonal froth using a physical mo
and we have shown the existence of a new scaling state
the cells surrounding the defect. The results are in g
agreement with previous topological and large-Q Potts simu-

FIG. 3. ~a! The number of cell neighbors to the defect as
function of simulation time.~b! The number of cells in the bound
ary cluster$c8% versus the number of neighbor cells.
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lations @15,16#. However, the comparison with the exper
ment @20# using a bubble raft is only qualitative due to th
fact that the experiment has a short duration and is a
froth while the direct simulation is assumed to be fluidless
the soap films. Thus an experiment with a single defect i
dry hexagonal froth is highly desirable.
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FIG. 4. ~a! The second moment of the topological distributio
for the cluster$c% ~dashed line!, the boundary cluster$c8% ~solid
line!, and the neighbor cells$b% ~dotted line! as a function of simu-
lation time.~b! The topological distribution for the boundary clust
$c8% ~solid line!, the neighbor cells$b% ~dotted line!, and the normal
froth ~dashed line!.
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